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ABSTRACT

It is argued that once biological systems reach a certain level of complexity, mechanistic

explanations provide an inadequate account of many relevant phenomena. In this article,

I evaluate such claims with respect to a representative programme in systems biological

research: the study of regulatory networks within single-celled organisms. I argue that

these networks are amenable to mechanistic philosophy without need to appeal to some

alternate form of explanation. In particular, I claim that we can understand the math-

ematical modelling techniques of systems biologists as part of a broader practice of

constructing and evaluating mechanism schemas. This argument is elaborated by

considering the case of bacterial chemotactic networks, where some research has been

interpreted as explaining phenomena by means of abstract design principles.
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1 Introduction

The last two decades have seen a widening embrace of the mechanistic per-

spective among philosophers of biology. This view, which received early con-

tributions from Bechtel and Richardson ([1993]), Glennan ([1996]), and

Machamer et al. ([2000]), holds that much of the research being done in the

life sciences is best understood as a search for the mechanisms responsible for

phenomena. Explaining phenomena using mechanisms is seen as an alterna-

tive to the traditional deductive-nomological or unificationist models of sci-

entific explanation, which, because of the scarcity of general, exceptionless
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laws in biology, fail to adequately characterize these fields (Beatty [1995];

Bechtel and Abrahamsen [2005]). In contrast, the ‘new mechanistic philoso-

phy of science’ (Skipper and Milstein [2005]) emphasizes the practice of spe-

cifying organized complexes of entities and activities that produce phenomena

as an explanatory strategy.1

Yet it is still developing as a perspective and there is disagreement over how

broadly this notion of explanation can or ought to be applied.2 Mechanistic

philosophy draws heavily from examples in the fields of molecular biology,

neuroscience, and basic cell biology. While authors acknowledge its adequacy

for such fields, it is frequently contended that, as biological systems approach

higher levels of behavioural and compositional complexity, the explanatory

purchase of standard mechanistic concepts and strategies begins to falter (see,

for example, Ramsey [2008]; Weiskopf [2011]; Andersen [2012]; Brigandt

[forthcoming]). In particular, the sufficiency of mechanistic philosophy is cur-

rently being disputed for research that falls under the banner of ‘systems

biology’. This term refers to a collection of research programmes, largely

outgrowths of molecular and cell biology but also including studies at the

population level, that share a certain methodological overlap. Unlike much

of biology, the use of quantitative models predominates, especially those of

dynamic systems theory and advanced statistics. This results in a greater em-

phasis on computational models and experiments in silico. Affiliated authors

call for a ‘holistic’, ‘synthetic’, ‘anti-reductionist’, or ‘integrative’ conception

of biology (Boogerd et al. [2007a]). While some hold that systems biology is

mechanistic (Boogerd et al. [2007b]; Richardson and Stephan [2007]; Bechtel

[2011]; Bechtel and Abrahamsen [2013]), others argue that it involves a dis-

tinct, non-mechanistic form of explanation. The authors that I will consider

(Braillard [2010]; Kuhlmann [2011]; Silberstein and Chemero [2013]) take a

similar stance on the status of systems understood through network model-

ling.3 The sense that such research falls outside of the mechanistic purview is, I

think, motivated by three factors:

(1) A tendency in the mechanistic literature to privilege linear sequential

processes that produce a phenomenon as their end state over those

1 This is the terminology introduced in the Machamer–Darden–Craver variant of mechanistic

philosophy (Machamer et al. [2000]). Other authors make use of other terms with slightly dif-

ferent connotations and uses, although all retain the basic dualism between entities and activ-

ities. Bechtel and Richardson ([1993]) prefer ‘parts and operations’, while Glennan ([1996]) cites

‘parts and their interactions’.
2 For this reason, some authors have voiced concern over the perceived excesses of ‘mechanistic

imperialism’ (cf. Weiskopf [2011]).
3 It should be noted that each author varies slightly in their terminology. Only Braillard speaks

directly of systems biology. Kuhlmann instead describes ‘dynamically complex systems’, and

Silberstein and Chemero are more immediately concerned with systems neuroscience. That said,

I believe the substantial similarity in the form of their arguments and the suggestion that one can

draw implications for systems biology from them justifies this admitted act of lumping.
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that are cyclic and underlie or maintain phenomena. The belief that

these are the fundamental forms of mechanisms is perhaps exacer-

bated by the phrasing of the oft-cited Machamer–Darden–Craver

definition, according to which they are ‘are productive of regular

changes from start or set-up to finish or termination conditions’

(Machamer et al. [2000], p. 3).

(2) The emphasis in the early work of Bechtel and Richardson ([1993])

on the strategies of decomposition and localization, by which one

partitions a complex system into its spatial components and divides

up the functions of the mechanism in terms of them. This has led

some authors to believe that mechanistic explanation is strictly

downward-looking: describing the functioning of the whole in

terms of the combined properties of its lower-level parts.

(3) The methodological differences between systems biology and other

biological fields. The heavy use of mathematics for modelling pur-

poses, which runs counter to the standard reliance on visual, pictorial

diagrams in biology, is thought to conflict with mechanistic reason-

ing. In particular, the predictions made on the basis of model struc-

tures are viewed as explanations that are not strictly mechanistic.

In what follows, I will evaluate these latter claims with respect to a represen-

tative programme in systems biological research: the study of regulatory net-

works within single-celled organisms. I argue that these networks are

amenable to mechanistic philosophy without need to appeal to some alternate

form of explanation. I intend to show how commonly accepted postulates and

procedures of mechanistic philosophy apply to and are referenced within the

study of cellular networks. In addressing the critics, I aim to advance a picture

of mechanistic science that is in accord with the methodology of those study-

ing cellular networks. For this I will draw on a depiction of the explanatory

strategies of mechanistic science, which I owe to Craver and Darden ([2013]);

they cover this in greater detail. After briefly arguing for the compatibility of

systems biology with these strategies, I will consider and reject an alternative

view of systems biology, which I associate with the notion of ‘design

explanation’.

2 The Strategies of Mechanistic Science in the Study

of Cellular Networks

The search for mechanisms can be presented as three general stages: charac-

terization of the phenomena, construction of schemas, and evaluation of

schemas. The aim of this process is to establish a representation of a mech-

anism that captures all of the features contributing to the phenomenon under
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consideration. Once a relatively complete representation has been con-

structed, it enables one to give a mechanistic explanation of the phenomenon.

This is done by referring to the manner in which the phenomenon is consti-

tuted by what the schema represents—namely, the productive continuity and

organization of the entities and activities that comprise the mechanism.4

Making sure one accurately characterizes the phenomenon is a crucial ini-

tial step as it serves as a guiding norm for the following stages. For our pur-

poses, a phenomenon is taken to be a regular natural occurrence, ‘a repeatable

type of event or product’ (Craver and Darden [2013], p. 54). Phenomena are

characterized with the aid of data collected through observation and experi-

mentation. William Bechtel ([2007]; [2011]; Bechtel and Abrahamsen [2013])

has noted that the phenomenon of life, at its most basic level, involves the

maintenance of a system that is autonomous from its environment. Living

organisms resist entropic forces, which tend towards disorder, by continually

drawing energy from their surroundings and directing it towards processes

that uphold their internal organization. By maintaining their structure and

behaviours with relative consistency within varying environmental or internal

conditions, organisms manifest robustness in various ways. Accounting for

these and related phenomena is one of the aims of systems biology. The sys-

tems studied often involve multiple entities interacting in causal cycles. As a

result, the systems as a whole tend to exhibit non-linear dynamics—that is,

their behaviour fluctuates at a non-constant rate and may involve complex

oscillations or deterministic chaos (Strogatz [1994]). Due to the complexity of

these phenomena, which cannot be precisely captured by verbal or diagram-

matic reconstruction alone, computational modelling of the system’s dy-

namics is often employed.

Cells are maintained by multilevel systems composed of different molecular

entities and their interactions. These regulatory networks of genes, transcribed

RNA, proteins, and metabolites function in highly complex, coordinated

ways. They thus fortify basic cell activities against changes in the cell’s

environment. The guiding aim of those who study cellular networks is the

construction of a complete model of such self-regulating behaviour

(Herrgard et al. [2004]). While comprehension of relevant intra-cellular

processes—transcription, protein modification, ribosome assembly, and so

on—provides a conceptual underpinning, the study of cellular networks regu-

larly abstracts from the details in order to precisely describe the quantitative

relations between their products. For instance, researchers focus on relative

rates at which genes are being expressed by measuring the concentration levels

of transcribed mRNA or synthesized proteins within a cell. By mapping

4 I sometimes make reference to ‘components’ instead of entities and activities. I think of these as

discrete, intra-mechanism complexes of entities and activities, although a single entity could also

constitute a component.
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these relations, they aim to determine the corresponding network of inter-

actions by means of which regular cell activity is maintained: gene–gene,

gene–protein, protein–protein, and the like. Moreover, this will allow for a

more accurate characterization of the specific functional role of each gene

within the cell.

In contrast to point (1) above, Craver and Darden ([2013]) distinguish be-

tween three relations that a mechanism may have to a phenomenon (Figure 1);

the mechanism may produce a phenomenon at the end of a continuous pro-

cess; it may underlie it as a number of organized working parts that give rise to

a phenomenal whole; or it may maintain a phenomenon by counterbalancing

forces that shift some process away from a homeostatic steady-state point. I

want to suggest that cellular networks are mechanisms that are best thought of

as underlying and maintaining phenomena. That is, the observed behaviour of

a cell is held to be constituted by an underlying organization of genes, tran-

scription factors, proteins, and metabolites. This underlying organization is

given schematically in terms of a network graph. The cell’s stable functioning

under shifts in environmental or internal conditions is maintained by means of

Figure 1. Three mechanism–phenomenon relations.
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the complex regulatory relations existing between network constituents. This

functional maintenance is given schematically in terms of the system-level

dynamics derived from the network representation.

The task of schema construction works to determine the components and

organization of the mechanism that produces a phenomenon. The result is a

representation of how a collection of entities and activities are organized in a

manner that displays the productive continuity underlying the phenomenon—

a mechanism schema. Roughly speaking, schemas can be thought of along

similar lines as models in other areas of science; they are objects, more or less

abstract, whose parts stand in some kind of representational relation to things

in the world and that are not strictly reducible to linguistic description, instead

often drawing upon mathematical or diagrammatic presentations (Teller

[2001]; Frigg and Hartmann [2012]).5

Schema construction is the main stage in the mechanistic logic of discovery.

It is orientated by a focused, pragmatic interest in the particular phenomenon

under concern and the levels of organization within which its mechanism or

mechanisms are individuated. Analogical reasoning may play an important

role here (Hanson [1970]): researchers may enter the construction stage with a

stock of mechanism types known to operate in structurally or environmentally

similar phenomena. These can be used to help generate hypotheses about

constitutive entities or activities or, by abstracting from particular details,

they may give clues as to the spatial, temporal, or causal organization of the

mechanism (Craver and Darden [2013], Chapter 5). The specific advantages of

such abstraction have been noted recently by Levy and Bechtel ([2013]), who

note that a high degree of abstraction often helps in determining the contri-

butions of causal organization to system-level behaviours.

An initial step in schema construction for systems biology researchers is that

of network inference. Given a set of data,6 a number of statistical methods are

available for the construction of cellular network models, many of which

involve building point-and-line graphs in which the nodes represent genes,

proteins, or other cell products, and the edges stand for some form of depend-

ency relation (derived algorithmically from the data) between them. Using one

5 Due to the predominance of the term ‘model’ in discussions of systems biology, I’ll tend to use it

instead of Darden and Craver’s ‘schema’. For my purposes, they are interchangeable.
6 Research in cellular networks has been spurred by the increased availability of high-throughput

data gathering given by measurements such as gene expression profiling, which employs robotics

to gauge the expression activity of prepared mRNA samples. Multiple parallel experiments may

be carried out at once, yielding very large quantities of data. So much data are produced that

curated databases are used to store the results, but it is important to note that difficulties in

accuracy attend to this process. Most databases are not designed to account for context-sensitive

gene activity; high-throughput analyses often fail to detect rare events or unstable interactions;

and the data available for model organisms usually address a small number of cell processes and

experimental conditions (De Backer et al. [2010]). The challenge for researchers is finding an

appropriate way to infer the actual network of interactions from data drawn from experiments,

mined from databases, and sourced from extant publications.
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of the most computationally rich means of determining regulatory relations—

namely, Bayesian procedures—only those genes that are found to show a

strong form of stochastic dependence have their representative nodes linked

in the graph.7 In this way, network graphs serve to represent the key mech-

anistic features: nodes stand for the networks components and directed edges

stand for their functional interactions while indicating direction of causal

influence.

Initial models may not accurately depict an underlying mechanism, but

instead present ‘how-possibly’ explanations of a phenomenon. They show,

given the available evidence, researchers’ hypotheses for how a phenomenon

could arise. There may be multiple competing how-possibly mechanisms for a

single phenomenon. During schema construction, constraint-based reasoning

helps researchers pare down the space of models by eliminating those that are

deemed unrealizable on the basis of accepted physical or biochemical prin-

ciples. Available models are then evaluated and tested in an effort to better

represent the mechanism.

These constructive and evaluative techniques come together in systems biol-

ogy when network graphs inferred through statistical methods are analysed

and subjected to algorithmic or manual selection procedures. Authors attempt

to give an even more accurate rendering of the actual network by integrating

additional data about cell structures, such as analyses of gene location.8 Such

a practice is indicative of the merging of top-down approaches (constructing

approximate networks based on large-scale data describing functional rela-

tions) with bottom-up approaches (building up from detailed data describing

molecular components of a system) (De Backer et al. [2010]).

Since an inferred network graph extends beyond the observed data, it allows

for the prediction of a large number of regulatory interactions between genes.

Computational analysis of the graph allows for the identification of numerous

7 Bayesian networks are those in which nodes Xi and Xj, which represent molecules (genes,

proteins, metabolomes, and so on), are only connected by an edge if the corresponding

molecules’ activities are correlated and, knowing the behaviour of all other relevant molecules

and subsets thereof in the system, the behaviour of Xi still yields additional information

about Xj (Markowetz and Spang [2007]). Formally, the relation of conditional

independence (written X ’ Y jZ) is given when the following evidential probabilities hold:

P(X¼ x, Y¼ y j Z¼ z)¼P(X¼ x j Z¼ z) � P(Y¼ y j Z¼ z). Nodes Xi and Xj in Bayesian net-

works are thus only connected by an edge when their observed activity is correlated and one has:

� ðXi oXjÞjXS for all S � VC fi; jg;

where V is the complete set of nodes, S is a subset of nodes, and XS is the collective activity of this

subset. This technique allows for the construction of graphs with directed edges showing deter-

minate pathways of influence.
8 These determine the DNA binding sites of proteins, providing physical evidence for regulatory

relations between a gene that produces a given protein and those genes bound by the protein.

Such information can be incorporated into model selection by giving no weight to those models

that fail to include edges required by location data to be present, or vice versa—a form of

constraint-based reasoning applied to automated modelling procedures (Hartemink [2002]).
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structural features. For example, Bechtel and Abrahamsen ([2013], p. 15)

mention topological analyses that indicate that many biological networks

are characterized by ‘small-world organization’ in which there are a number

of distinct, highly connected clusters with fewer links in between them; these

can operate with lower energy costs than highly connected networks and

‘allow for specialized sub-populations that differ from the overall population’

([2013], p. 720). Likewise, network analysis allows researchers to note the

presence of ‘network motifs’—sub-systems such as feed-forward or feedback

loops whose recurrence may play a functional role in the overall structure

(Alon [2006]; Albert [2007]). These and other global patterns of connectivity

among network components contribute to inferences regarding system

behaviour.

The fit of the organization that the schema imputes to the mechanism can be

further tested by interventions; precisely altering the mechanistic process at one

point should yield predictable alterations in those points that are thought to be

causally downstream. Such experiments enable one to update a schema—

further specifying the organization and functional role of the mechanism’s

components—or consider more serious revisions (Craver and Darden [2013],

Chapter 8). Obtaining a better representation of the functional organization of

the actual network often requires the implementation of dynamic modelling.

Models of this sort supplement an interaction network graph with functions

describing how the state of a given node depends on the state of those to which it

is connected. This may be achieved by assuming that the regulatory network can

be represented in terms of a system of differential equations and measuring its

response to perturbations (as in Gardner et al. [2003]).9

As Bechtel and Abrahamsen ([2013]) have argued, there is a close relation

between, on the one hand, the parameters and variables of the differential

equations and, on the other hand, the mechanistic entities and activities being

modelled. In the case of network dynamics, variables can stand for the indi-

vidual expression rates of the genes (equivalently, the concentration of differ-

ent mRNAs) and parameter coefficients describe the regulatory interactions

between the genes (Gardner et al. [2003]). Schematizing the system-level

9 In this approach, the dynamics of the system under perturbation are described using a system of

ordinary differential equations, dx/dt¼Ax + u. While the authors recognize that relations

between networks components are typically non-linear, they reason that a system near a

steady-state point is stable enough to be approximated by linear equations. For example, x is

an n-dimensional vector, the n components of which stand for the concentration of different

mRNA; u is a vector representing an external perturbation, offsetting the concentration of one

or more distinct mRNA sequences; and A is an n� n matrix of parameter coefficients that weigh

how much the presence of each mRNA depends on the presence of the others. By assuming that

the system is perturbed from a steady-state point (so dx/dt¼ 0), researchers can make a series of

small determinate perturbations (u), measure the resulting levels of mRNA (x), and solve

Ax¼ -u for A. After data has been gathered from numerous perturbations, multiple linear

regression is applied to numerically determine the correlation coefficients relating gene concen-

trations (A).
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dynamics generated by a cellular network provides a model of how these

underlying mechanisms collectively function to maintain observed states or

behaviours of the organism by showing how the combined interactions of

network components tend toward certain system-level equilibria.

3 Are Mechanisms Insufficient?

Thus one can detect a methodology among systems biologists that can be sub-

sumed under the general strategies of mechanistic science. A phenomenon is

characterized: the robust, self-regulating behaviour of living systems—single

cells, in our case—with respect to their environment. This is done by integrating

knowledge of distinct intra-cellular processes with the assumption that the inter-

locking effects of their combined activity regulate the cell. Due to the complexity

of the mechanisms and the difficulty in mentally simulating constitutive inter-

actions, it is supposed that any reasonably accurate schema has to incorporate

advanced mathematical modelling techniques. A network graph is inferred from

data tracking component interactions. Because of relative limitations in data

and computational technologies (there are far more genes than measurement

samples; there are multiple models that fit the data), the how-possibly schemas

must be analysed in terms of correctness, that is, how realistic they are for a

biological system. This is done by incorporating informed assumptions (for

example, economy of regulation (cf. Albert [2007], p. 3332)) and integrating

additional information (for example, genomic location data) into the process of

model selection. Finally, schemas are evaluated and further specified by testing

predictions derived from network inference analysis and determining causal

networks through perturbational interventions.

A dynamic model of the whole system, given by a system of differential

equations, can be developed from these interventions. Just as suggested as a

strategy for constructing a mechanism schema (Craver and Darden [2013],

Chapter 5), systems biologists reason analogically, predicting system-level

properties and dispositions from the dynamic systems encountered in other

fields, such as engineering and control theory (drawing on (Ljung [1999]), for

instance). Thus a representational schema of the underlying aspects (given by

a network graph) and maintaining aspects (given by the system-level dynamics

developed from this network) of the mechanism or mechanisms is constructed,

which can itself be tested by further experimental intervention. Throughout

the field, careful researchers do not appear to lose sight of the fact that they are

detailing the active organization of specific entities and the interactions

between them.10

10 Consider Albert ([2007], p. 3336), for whom ‘one needs to know (1) the identity of the

components that constitute the biological system; (2) the dynamic behavior of these components
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The claims made here and in the previous section constitute a response to

point (1) of the introduction. In contrast to the linear, sequential notion of

mechanisms, systems biology can be understood as a practice of constructing

and evaluating schemas for complex mechanisms that underlie and maintain

the phenomena of self-regulating states and behaviours in organisms. I can

now address point (2) regarding the downward-looking characterization of

mechanistic explanation. Silberstein and Chemero ([2013], p. 961) state, ‘lo-

calization and decomposition are universally regarded as the sine qua non of

mechanistic explanation’. It is asserted that mechanistic explanations take the

intrinsic properties of a system’s components as the basis from which the

overall behaviour is derived. This view of mechanistic explanation as essen-

tially reductionist allows authors to frame complex dynamics as outstripping

its resources; in dynamically complex systems ‘most facts about the nature of

these components as well as their initial arrangement have no bearing on the

complex system behavior one wants to explain’ (Kuhlmann [2011], p. 4). The

reasons for this are two-fold: First, dynamics at the level of the whole system

have properties and functions (sometimes called ‘emergent’) that result from

the global structure of its components’ interaction network. It follows that

these properties and functions are, in a way, distributed throughout the entire

system and cannot be located in one place or another. Second, the properties

of network components—gene expression rates, rates of enzyme activity, and

so on—cannot be adequately described through intrinsic features, but are

determined holistically as the result of their place in an entire network.

Because mechanistic explanation is based on localization of functions in spa-

tial components, because its explanations depend on the intrinsic properties of

these components, and because such a task is not possible in the analysis of

dynamically complex systems, it is argued that any explanation based on this

method must not be mechanistic.

Drawing on (Craver and Darden [2013]), I have suggested an alternate

account of mechanistic explanation as rooted in the elaboration of a

schema that adequately describes the manner in which the organization of

entities and activities constitute and maintain a phenomenon. Their account

fits well with the intuition that there is no need to give a complete character-

ization of every aspect of every component when one is seeking to explain a

higher-level organization; this is the pragmatic element of mechanistic explan-

ation. Against the reductionist notion of mechanisms, Craver ([2007]) has

argued that articulating what he calls the ‘active organization’ of systems is

a crucial norm of mechanistic explanation. In contrast to spatial and temporal

organizations, the active organization of a mechanism is described in terms of

(i.e. how their abundance or activity changes over time in various conditions); and (3) the

interactions among these components’—all of which are basic mechanistic details.

Dana Matthiessen10



the functional role that each entity plays with respect to one another. In par-

ticular, the concept indicates the relevance of cooperative or inhibitory inter-

actions between constituents to the net behaviour of the system. Mechanisms,

as Craver notes, ‘are not mere static or spatial patterns of relations, but rather

patterns of allowance, generation, prevention, production, and stimulation’

(Craver [2007], p. 136).

It is because mechanisms do not just function in a single context but interact

with the larger systems in which they are situated that such patterns can be

identified at different levels of organization. Observing these patterns may not

depend directly on the specification of the activities and entities that comprise

a component mechanism. This is clearly the case even in examples that are

undeniably mechanistic. For example, there is no need to refer to the proper-

ties of every individual cell when explaining how the heart pumps blood

(Craver and Darden [2013], Chapter 7). It is readily understood without any

apparent change to the character of the explanation that tissues behave in

ways that their constituents cannot and that these constituents are affected by

this behaviour. Similarly, it is understood that any attempt to explain a phe-

nomenon like the heart pumping blood through the activities of individual

cells alone would be overly complicated and serve only to obscure the pattern

of interest. As I said before, we must bear in mind that mechanistic explan-

ation is orientated by a pragmatic interest in the particular phenomenon of

concern and the levels of organization within which its mechanism or mech-

anisms are individuated.

Philosophers have noted that certain real patterns of phenomena only

become salient under certain conditions of abstraction (Dennett [1991]).

Scientific models may employ abstraction in order to more accurately char-

acterize the core causal properties underlying a phenomenon of interest

(Cartwright [1989], Chapter 5; Weisberg [2007]). If mechanism schemas are

kinds of models, as I have suggested, then we should not be surprised to see

similar techniques at work in their construction. This point has been made

explicitly by Arnon Levy. With Bechtel he writes that when considering the

dynamic behaviour of mechanisms, ‘abstract models, such as models of con-

nectivity [. . .] highlight the features of that specific system that make a differ-

ence in it—namely, its pattern of internal causal connections’ (Levy and

Bechtel [2013], p. 259).11 Further, it is hard to see how a component’s proper-

ties being affected by its role in a higher level causes trouble for mechanistic

explanation. Mechanists can recognize the independence of causal relations

11 In citing their work, I do not mean to wholly endorse some of Levy and Bechtel’s ([2013])

conclusions. In particular, I think there are reasons to be suspicious of the sufficiency of fully

general explanations of mechanistic phenomena. As I will attempt to show with the case of

Braillard and chemotaxis, explanations relying on general formal principles alone deprive us of

the ability to sufficiently explain any particular phenomenon, even in systems biology.
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within a given level from the constitutive relations holding between upper and

lower levels. Their explanations may thus be upward- as well as downward-

looking, aiming to characterize the activity of a mechanism in terms of its

functional role as a constituent of a higher-level mechanism, especially when

‘the behavior of this system determines the causal factors impinging on it in a

systematic manner’ (Bechtel [2008], p. 156).

Biologists may often work at a high degree of abstraction when considering

system-level dynamics, but what they are doing is not different in kind from

other mechanistic strategies—they draw on data to develop schemas that are

then evaluated internally and through experimental interventions. While sys-

tems biologists studying cellular networks clearly acknowledge the constitu-

tive role of the detailed processes involved in individual instances of protein

synthesis, RNA transcription, and the like for the maintenance of a cell, they

can also abstract away from these details when considering the regulative roles

that these entities play in a higher-level system. Moreover, it is often recog-

nized that current techniques are insufficient for the ultimate explanatory task

at hand:

To understand the complexity of living cells future research will need to

build models including all these layers [genomic, transcriptomic, prote-

omic, and so forth]. Statistical inference on parts of the system will not

provide the mechanistic insights functional genomics is seeking for.

(Markowetz and Spang [2007]. p. 13)

A degree of functional localization is possible in the case of cellular networks.

By means of network analysis, researchers are able to identify distinct func-

tional roles with sub-network clusters and interaction motifs. Contrary to the

claim that localization can be wholly disregarded, authors argue for the use of

location data to assist in selecting an accurate model (Herrgard et al. [2004],

p. 72).12 It is this bi-directional aspect of schema construction that provides

the grounds for systems biological explanations.

4 Design Explanations and Bacterial Chemotaxis

In point (3) of the introduction, I noted that the modelling methods of systems

biologists have inspired authors to posit distinct, non-mechanistic explanatory

strategies in the field. In opposition to the compatibility with mechanistic

12 As an addendum to this argument, I’d like to point out that there are several articles that try to

show that emergence is compatible with mechanistic philosophy: ‘The cases where macromol-

ecules are not separable from their environment would lead to strong emergence. We would here

suggest that it will be possible to make all essential properties of living organisms emerge from

silicon-cell-type models. This then implies that all functional properties of living systems come

from weak emergence. We base this conjecture on the experience that free-energy transduction,

gene expression, cell cycling and developmental biology can be generated by such models

(cf. www.siliconcell.net)’ (Westerhoff and Kell [2007], p. 58, see also Boogerd et al. [2005]).
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science that I have been claiming, critics argue for an alternate notion: struc-

tural or design explanation. An important feature of these explanations is that

they are not causal. According to Braillard ([2010], p. 56), design explanations

reveal functional constraints for the systems to which they apply: ‘What is at

stake is that some specific design principles might be necessary for a biological

function to be performed or for the entire system to be able to exist in a

changing environment independently from the evolutionary path taken’.

Since functional constraints are not the product of evolution, they ‘have

their origin in the functioning of the whole system in the context of some

environment’.

As an example, Braillard refers to a design explanation given for an aspect

of bacterial chemotaxis. Chemotaxis is the process by which motile bacteria

sense changes in their chemical environment and move to more favourable

conditions (Bren and Eisenbach [2000]). Motion is directed towards areas with

a greater concentration of particular chemoattractants or a lesser concentra-

tion of repellents. For organisms like Escherichia coli, motion occurs by means

of alternating clockwise and counter-clockwise rotation of a flagellum, cycling

between directed ‘runs’ and redirecting ‘tumbles’. The network of molecules

that compose the chemotactic signalling pathway mediating chemical envir-

onment and flagellar motion in E. coli has been studied since the work of

Julius Adler in the 1960s (Baker et al. [2005]). It is now one of the best-

understood networks of its kind, and homologues of the genes known to

encode its components are found in most motile bacteria (Wadhams and

Armitage [2004]; Porter et al. [2008]). Add in its relative simplicity with

regard to the number and kind of interacting elements and we have excellent

reason to use this as a case study for how cellular networks are explained in

systems biology.

Figure 2 is one of many similar diagrammatic representations of the chemo-

taxis network in E. coli that are found in scientific texts. It is composed of

transmembrane chemoreceptors (methyl-accepting chemotaxis proteins, or

MCPs) spanning the cell membrane, several intra-cellular chemotaxis proteins

(Che’s), and a flagellar motor. The interactions are as follows: CheA is able to

draw phosphate molecules off of ambient ATP in the bacterial cell, a process

called autophosphorylation. These can then phosphorylate CheY or CheB,

passing the phosphate to one of these proteins. Phosphorylated CheY, CheYP,

is able to bind to the flagellar motor, causing it to reverse its motion from the

default counter-clockwise to clockwise rotation. This induces tumbling in the

bacterium, altering the direction of its next run.

CheW links the CheAs to MCPs to form a molecular complex such that,

when an environmental attractant binds to an MCP,13 this brings about

13 These are mainly amino acids, sugars, and oxygen (Porter et al. [2008]).
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a conformational shift in the receptor that is transmitted through CheW,

ultimately suppressing the CheAs’ capacity for autophosphorylation. As the

concentration of environmental chemoattractants increases, more bind to the

receptors, reducing the frequency of reorientations.14 Thus the concentration

of CheYP serves as an internal measure of the bacterium’s environment, indu-

cing it to engage in longer runs according to the chemical gradient of its

environment, thereby promoting movement towards areas of higher attract-

ant concentration. Several molecular mechanisms are in place to mitigate

these longer runs so that the bacterium may adapt to new environmental

concentrations. CheRs act on a cytoplasmic signalling domain of the recep-

tors, adding a methyl group that alters the protein’s conformation. This in-

creases CheA activity, thereby counteracting the effect of attractant binding.

This is balanced by a negative feedback loop: CheBs demethylate receptors,

and do so at a much higher rate when phosphorylated by CheA, counteracting

increases in CheA activity caused by CheR. Lastly, while CheR and CheB

intervene on receptors at the beginning of the signalling chain to effect signal

adaptation, CheZ promotes signal termination by intervening near the end. It

acts on CheYPs, dephosphorylating them so that they can no longer bind to

the motor.

While this schema allows for a thorough characterization of the individual

components and interactions of the network, it fails to provide a rich sense of

how multiple interactions take place and affect one another as a dynamic

system. In particular, it cannot fully account for a noteworthy characteristic

observed in bacterial chemotaxis: the behaviour of the flagella can adapt to

changes in environmental conditions with near perfect precision. That is,

flagellar activity remains extremely consistent over large variations in

Figure 2. The phosphorelay signalling network governing flagellum activity in

E. coli.

14 As should be expected, environmental repellents have the reverse effect.
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concentration of a surrounding chemoattractant or repellent as long as this

concentration is homogeneous. This behaviour, termed ‘robust perfect adap-

tation’, allows E. coli to remain sensitive to small gradations in its chemical

environment regardless of the overall concentration.

Differential equations allow for a more exact understanding of synchronic

network interactions. Using these, Barkai and Leibler ([1997]) presented a

model in which robust adaptation is achieved in such a way that the action

of internal proteins that modify system activity is determined by the net ac-

tivity of the system itself:

A mechanism for robust adaptation [. . .] can be obtained when the rates

of the modification and the reverse-modification reactions depend solely

on the system activity, A [the total amount of active proteins], and not

explicitly on the concentrations Em and E [proteins whose presence

depends on environmental factors]. This system can be viewed as a feed-

back system, in which the output A determines the rates of modification

reactions, which in turn determine the slow changes in A. (Barkai and

Leibler [1997], pp. 915–6)

According to the Barkai–Leibler model, then, robust perfect adaptation does

not depend on specific values of internal parameters, but is built into the

network structure itself.

That this is the case in E. coli was subsequently confirmed experimentally

(Alon et al. [1999]). Authors reported that varying the concentration of re-

ceptors CheB or CheY altered adaptation time and steady-state

tumbling frequency, but the bacteria would still reliably return to this

steady-state behaviour over a range of attractant concentrations. The

Barkai–Leibler model was later analysed by Yi et al. ([2000]). They deter-

mined, by means of the analytical techniques of control theory, that the

model exhibited a precise level of control over system output (flagellum

activity) due to its inclusion of a specific control structure, an integral feed-

back loop (Figure 3).

Braillard takes this to mean that the particular organization of the chemo-

taxis pathway governing flagellar behaviour in E. coli is explained by the

identification of a feedback loop in the Barkai–Leibler model because only

this could produce robust perfect adaptation: ‘Furthermore, and this is cru-

cial, [the researchers] claim that integral feedback control is not only sufficient

but also necessary for robust perfect adaptation’ (Braillard [2010], p. 49). Yi et

al. ([2000], p. 4652) claim not only that the structure is necessary for robust

perfect adaptation, but that ‘if [Barkai and Leibler’s] specific model is later

found to be contradicted by experimental data, another mechanism imple-

menting integral feedback is likely to be present’. But this is not an independ-

ent explanation. While the discovery of integral feedback helps to explain how

the flagellum behaviour could alter so smoothly, it is only the beginning of the
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explanation. Knowledge of the specific molecular components, their network

of interactions, and how those interactions are mediated—in other words,

mechanistic details—is all crucial to precisely characterizing how exactly

this behaviour can be produced in this organism.

Take, for instance, a thermostat that can precisely adjust the activity of a

heater based on a continuous temperature reading. From the perspective of

control theory, there is no difference between this behaviour and that of the E.

coli’s flagella insofar as they both involve integral feedback control.15 If iden-

tifying the dependence of robust adaptation on integral control counts as

explanation, then we must say that bacterial chemotaxis and thermostats

are here explained in the same way. Such is the generality of design explan-

ation that Braillard ([2010]) celebrates, but surely we want our sciences to

employ a form of explanation that enables us to distinguish between these

systems. This can only occur if models are understood to be based on and

correspond to the actual organization of such systems. Only then can we

understand how underlying mechanistic interactions give rise to certain ab-

stract patterns of behaviour and are capable of maintaining them. Otherwise,

we are simply characterizing abstracta and their properties, not explaining

particular phenomena.

Braillard ([2010]) holds that there are general design principles that can be

observed in the functional relations between a whole system and its environ-

ment from which one can explain why the system is structured as it is. As his

commentary on Yi et al.’s ([2000]) work shows, Braillard ([2010]) holds this

explanation to reside in the necessity (or high preferability) of a particular

design for a particular biological function to occur, a necessity that he claims

can hold without reference to evolutionary theory. The idea is that, regardless

Figure 3. A block diagram of integral feedback control. u is the input for a process

with gain k. The difference between the actual output, y1, and the steady-state

output, y0, represents the error, y. Integral control arises through the feedback

loop in which the time integral of y, x, is fed back into the system (Yi et al. [2000]).

15 This happens to work in thermostats because temperature is proportional to the integral of heat.
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of the exact process by which an organism comes to have the functions that it

does, these functions can only be realized if they constrain the structure of the

organism in ways that accord with general design principles.

Braillard’s ([2010], p. 59) appeal to the ‘transcendence of design principles’

over their material instantiation thus appears to be the claim that the need for

organism structure to conform to design principles comes from the necessity

of design principles themselves, just as natural laws have sometimes been

described as ‘bestowing’ necessity. Given an environmental function, design

explanations are taken to show ‘why a certain structure is present’ (Braillard

[2010], p. 50). They achieve this by ‘point[ing] to synchronic and non-causal

functional dependences between the system’s structure and its environment’

(Braillard [2010], p. 51). But this turns out to be trivial, simply explaining

structure with structure. It is hardly clear that noting the contribution of

organismal structure to environmental functions can sufficiently explain

why that structure is present to begin with.

Consider our case study: the apparent explanation for why the chemotactic

network is organized such that it must contain an integral feedback loop is

that, by design constraints, this organization is necessary to achieve the

observed function of robust perfect adaptation. Such an explanation need

not specify the actual system of interacting molecules in the organism under

consideration, but is satisfied by showing that a general principle is hereby

instantiated. Yet, foregoing evolutionary reasoning, the only available explan-

ation for why this particular organism possesses integral feedback—why the

principle is instantiated in this case—is because it exhibits robust perfect adap-

tation. One cannot help but feel that this ricochet from the phenomenon of the

organism’s environmental function to general design and back is vacuous,

failing to fully explain either.

I grant that the work of Yi et al. ([2000]) does not look like mechanistic

explanation. They analyse a model for a phenomenon, identify a necessary

structural feature, and predict that models for similar phenomena will require

this structural feature. But it is not clear that they intend to give a full explan-

ation of why the chemotactic network is structured in the way that it is. In fact,

they appear to be working at one particular stage of mechanistic science,

namely, schema construction: ‘The recognition that integral control is respon-

sible for the robustness of perfect adaptation in the Barkai–Leibler model

allows one to evaluate the importance of the various assumptions of the

model’ (Yi et al. [2000], p. 4650). From this they determine constraints for

the construction of future mechanism schemas: ‘When combined with biolo-

gical realizability, this may greatly constrain, on the basis of external behavior,

the possible internal mechanisms that can be used to achieve the observed

behavior’ (Yi et al. [2000], p. 4651, emphasis added). Analysing models

allows researchers to prune down the space of how-possibly mechanisms,
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contributing to a more exact determination of the causal and functional or-

ganization of the relevant entities and interactions.

It is important to retain this sense that explanations in biology are con-

stantly orientated towards particular phenomena. Models serve as represen-

tations, more or less abstract, of the real systems in which these phenomena

occur. Observation of model properties alone does not guarantee that they

accurately represent the properties of the system. While experimentation on E.

coli did show that adaptation is robust under internal parameter change,

Barkai and Leibler’s model does not settle all of the questions regarding the

organization and functionality of the chemotactic network. First, it should be

noted that, while highly abstract, their model is clearly developed from a prior

mechanistic understanding. This much is acknowledged by the authors in their

paper with Alon: ‘Once the components of a biochemical network are isolated

and their interactions characterized, the mechanisms of the network’s func-

tioning can be addressed’ (Alon et al. [1999]). Certain mechanistic details are

also assumed in the model itself. For instance, it depends on the assumption

that CheB only demethylates actively bound receptors and that receptor–

attractant binding happens on a faster timescale than methylation/demethy-

lation (Tindall et al. [2008]).

Recently, there has been reason to doubt the notion that Barkai and

Leibler’s model sufficiently characterizes the active organization of the E.

coli network. Modellers aim to account not only for a system’s capacities

for adaptation and robustness, but also its sensitivity and gain (Tindall et

al. [2008]). It cannot be assumed that these capacities function independently

of one another, and so a failure to correctly model one may produce inac-

curacies in another. For example, Barkai and Leibler’s model left out phos-

phorylation interactions between CheA and CheY or CheB, which are

thought to play a role in the system’s sensitivity and gain (Tindall et al.

[2008]). Attempts to expand on their model by including these interactions

revealed that if, as Barkai and Leibler’s model requires, CheR is active at

saturation levels and acts on both bound and unbound receptors, then perfect

adaptation cannot take place (Morton-Firth et al. [1999]). Other authors,

citing all of the work that Braillard takes to support his claims, contest the

importance of perfect adaptation:

Each individual in a population of bacteria exhibits its own characteristic

flagella switching frequency. This variability is often not addressed in

discussions of ‘perfect adaptation’ of the chemotaxis system. Even in a

constant environment, the behavior of an individual fluctuates too much

over time to indicate a perfectly adapted state. (Baker et al. [2006])

Braillard claims generality as a distinct virtue of design explanations contra

mechanistic ones, yet there is reason for scepticism here as well. He fails to
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explicitly point out that the network in Barkai, Leibler, and Yi et al.’s work is

that of a single species, E. coli, and not a model of bacterial chemotaxis tout

court. Further, the article (Rao et al. [2004])—cited in Braillard’s claim that

‘different species have mechanisms that are different, but the design principles

are the same’—uses a model of the bacteria, Bacillus subtilis, that is openly

based on the Barkai–Leibler model of E. coli. Thus, that both adapt to the

environment robustly is deemed a ‘somewhat unsurprising result’, and the

model fails to shed light on why B. subtilis has been observed to be the far

more robust of the two (Tindall et al. [2008], p. 1540). One possible explan-

ation for this is the added complexity of its signalling pathway.

Studies of the B. subtilis network (Figure 4) show that it employs three

different adaptation systems (Rao et al. [2008]). Interestingly, removal of

any two of these has been found to severely impact bacterial motility, suggest-

ing that it is their integrated, coordinated activity that results in robust adap-

tive behaviour. It appears that the control system, observationally comparable

to that found in E. coli, requires a much more involved, distributed organiza-

tion in this case.16 The authors note that ‘An open question is why does B.

subtilis need three adaptation systems when organisms such as E. coli require

only one’ (Rao et al. [2008], p. 484). For these biologists, noting similar design

principles—as Rao and co-authors did ([2004])—does not exhaust the ques-

tion of why organisms have the particular organization that they do. Yet this

is precisely the question that Braillard takes design principles to answer.

More generally, the literature since Barkai and Leibler’s work speaks to a

burgeoning awareness of the diversity in chemotactic systems. With respect to

E. coli, ‘it is becoming increasingly apparent that chemotaxis in other bacteria,

although based on similar principles, might be far more complex’ (Wadhams

and Armitage [2004]). Others write, ‘Although the chemistry of the signaling

reactions is conserved across all known chemotaxis pathways, the way in

which these reactions are assembled to produce functional pathways differs

between species’ (Porter et al. [2011]). Divergences like those between the E.

coli and B. subtilis networks become even more pronounced when one con-

siders organisms that are, unlike these two, non-enteric. While B. subtilis dif-

fers in having multiple adaptation systems, many bacteria have multiple

chemotaxis pathways. The non-enteric bacteria Rhodobacter sphaeroides, for

instance, is estimated to have three, including one triggered by wholly internal,

cytoplasmic chemoreceptors (Porter et al. [2011]). Cross-talk between these

pathways and other sensory systems allows the bacterium to integrate com-

plex information regarding its external environment and internal metabolic

16 Where E. coli realizes adaptation through the CheA-activating methylation of receptors by

CheBP and deactivating demethylation by CheR, methylation both activates and deactivates

CheA in B. subtilis depending on the receptor binding sites that methyl groups are shuffled

between—a process that cannot yield robust adaptation on its own.
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state in determining motile behaviour. I take such diversity to raise doubts

about the claim that highly general design principles alone will sufficiently

answer the question that Braillard takes them to, namely,: ‘why it is this par-

ticular organization and not another one?’ (Braillard [2010], p. 58).

In sum, Braillard sees systems biology as engaging in explanatory projects

that deviate from mechanistic concerns. Instead of seeking explanations of

how a phenomenon arises through an account of constituent entities, their

activities, and their organization, design explanations use mathematical ab-

stractions to locate general principles determining the structural organization

of living creatures. I have questioned the explanatory adequacy of this ap-

proach and have given some reasons to doubt its ability to give an independent

unifying account of diverse species’ organizations. On the contrary, I find the

strategies and orientation of research among systems biologists to largely

support the claim that they are engaged in mechanistic inquiry rather than

treating model analysis as a separate practice. As one group of authors puts it:

What is the future of mathematical modeling in helping to understand

bacterial chemotaxis? In order to answer this question, we reflect upon

the exact goal of understanding bacterial chemotaxis systems. Is it not to

elucidate the mechanisms of sensing and moving in order that we may be

able to predict the behavior of bacterial chemotactic systems in the

environment? (Tindall et al. [2008], emphasis added)

The analysis of mathematical models is compatible with mechanistic explan-

ation not because it is complementary to it, but because it is part of the general

Figure 4. The phosphorelay signalling network governing flagellum activity in

B. subtilis.
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strategy of schema construction and evaluation. This is echoed by the same

authors who gave the control theoretic analysis of the Barkai–Leibler model:

‘A promising aspect of this broader theory is in providing further necessity

results to help biologists greatly narrow their search for specific mechanisms’

(Yi et al. [2000], p. 4652).

Rather than affirm the explanatorily vacuous ‘transcendence of design prin-

ciples’, we may note their positive role in enabling certain inferences about the

active organization of a mechanism’s components. Assuming that design prin-

ciples help us systematically predict functional constraints in a system’s or-

ganization, one might consider an alternate strategy of using them as evidence

in constructing a plausible mechanism schema. Since constraint-based reason-

ing is regularly employed in schema construction, specification of necessary

limitations on the structural possibilities of a mechanism would seem to work

well here. Kuhlmann ([2011], p. 21), although he also ascribes to the function-

alist language of design explanations, can help me make this point. He states

that ‘the reason why the same explanatory [design-based] strategies can suc-

cessfully be applied [in diverse fields] is the observable fact that there are

structural similarities in the dynamics of compound systems with completely

different kinds of subunits’. Again, I am inclined to think that Kuhlmann is

not really describing a form of explanation here, but a stage in the logic of

discovery.

Reasoning using abstract structural analogies is rightly identified as a useful

and sometimes powerful heuristic for schema construction, but explanation

cannot stop there. Fascination with the apparent autonomy of design should

be tempered by a realization that abstract principles bar us from explaining

the actual workings of any given system of sufficient complexity. Knowing

that diverse biological processes employ integral feedback without knowing

the functional role of the entities involved prevents researchers from being

able to understand the most basic effects of intervention into the system.

Systems biologists are concerned not only with the possible ways a structure

may be realized, but how it is actually realized in a living system. As a con-

sequence, they are aware of how the field is still afflicted with a poverty of data

and complications involving the construction of accurate models. They are

aware, that is, of how much more work is needed before they possess full-

fledged explanations of the phenomena of life.

5 Conclusion

I have used cellular regulatory networks as an example to show how the type

of model-based reasoning involved in systems biology corresponds to mech-

anistic strategies. In response to point (1) of the introduction, I claimed that

cellular networks are best understood as complex mechanisms that underlie
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and maintain phenomena. In response to point (2), I argued that this mech-

anistic view of cellular networks is compatible with the forms of abstraction

and holism used to analyse them. And in response to point (3), I argued that it

is more plausible to think that this programme is guided by mechanistic ex-

planatory strategies than by an entirely separate kind of explanation. Due to

the sheer complexity of the subject matter and the current impossibility of

collecting sufficiently precise data, much of the work in the field centres on

techniques of adequate modelling. What critics refer to as an alternate form of

explanation by design is better understood as a contribution to the analogical

and constraint-based reasoning involved in mechanistic schema construction.
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Biology vis-à-vis Molecular Biology: Continuation or Clear Cut?’, Acta

Biotheoretica, 58, pp. 15–49.

Mechanistic Explanation in Systems Biology 23

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F661513&citationId=p_33


Dennett, D. [1991]: ‘Real Patterns’, The Journal of Philosophy, 88, pp. 27–51.

Frigg, R. and Hartmann, S. [2012]: ‘Models in Science’, in E. N. Zalta (ed.), The

Stanford Encyclopedia of Philosophy, <plato.stanford.edu/archives/fall2012/

entries/models-science/>.

Gardner, T. S., di Bernard, D., Lorenz, D. and Collins, J. J. [2003]: ‘Inferring Genetic

Networks and Identifying Compound Mode of Action via Expression Profiling’,

Science, 301, pp. 102–5.

Glennan, S. [1996]: ‘Mechanisms and the Nature of Causation’, Erkenntnis, 44,

pp. 49–71.

Hanson, N. R. [1970]: ‘Is There a Logic of Scientific Discovery?’, in B. Brody (ed.),

Readings in the Philosophy of Science, Englewood Cliffs, NJ: Prentice Hall,

pp. 620–33.

Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. [2002]: ‘Combining

Location and Expression Data for Principled Discovery of Genetic Regulatory

Network Models’, in R. B. Altman, A. K. Dunker, L. Hunter, T. E. D. Klein and

K. Lauderdale (eds), Pacific Symposium on Biocomputing, Singapore: World

Scientific, pp. 437–49.

Herrgard, M. J., Covert, M. W. and Palsson, B. [2004]: ‘Reconstruction of Microbial

Transcriptional Regulatory Networks’, Current Opinion in Biotechnology, 15,

pp. 70–7.

Kuhlmann, M. [2011]: ‘Mechanisms in Dynamically Complex Systems’, in P. McKay-

Illari, F. Russo and J. Williamson (eds), Causality in the Sciences, Oxford: Oxford

University Press, pp. 880–907.

Levy, A. and Bechtel, W. [2013]: ‘Abstraction and the Organization of Mechanisms’,

Philosophy of Science, 80, pp. 241–61.

Ljung, L. [1999]: System Identification: Theory for the User, New Jersey: Prentice Hall.

Machamer, P., Darden, L. and Craver, C. [2000]: ‘Thinking about Mechanisms’,

Philosophy of Sciences, 67, pp. 1–25.

Markowetz, F. and Spang, R. [2007]: ‘Inferring Cellular Networks: A Review’, BMC

Bioinformatics, 8, p. S5, doi:10.1186/1471-2105-8-S6-S5.

Morton-Firth, C. J., Shimizu, T. S. and Bray, D. [1999]: ‘A Free-Energy-Based

Stochastic Simulation of the Tar Receptor Complex’, Journal of Molecular

Biology, 286, pp. 1059–74.

Porter, S. L., Wadhams, G. H. and Armitage, J. P. [2008]: ‘Rhodobacter Sphaeroides:

Complexity in Chemotactic Signaling’, Trends in Microbiology, 16, pp. 251–60.

Porter, S. L., Wadhams, G. H. and Armitage, J. P. [2011]: ‘Signal

Processing in Complex Chemotaxis Pathways’, Nature Reviews Microbiology, 9,

pp. 153–65.

Ramsey, J. L. [2008]: ‘Mechanisms and Their Explanatory Challenges in Organic

Chemistry’, Philosophy of Science, 75, pp. 970–82.

Rao, C. V., Glekas, G. D. and Ordal, G. W. [2008]: ‘The Three Adaptation Systems of

Bacillus subtilis Chemotaxis’, Trends in Microbiology, 16, pp. 480–7.

Rao, C. V., Kirby, J. R. and Arkin, A. P. [2004]: ‘Design and Diversity in Bacterial

Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis’, PLoS

Biology, 2, pp. 0239–52.

Dana Matthiessen24

plato.stanford.edu/archives/fall2012/entries/models-science/
plato.stanford.edu/archives/fall2012/entries/models-science/
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F392759&citationId=p_57
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F594539&citationId=p_62
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F670300&citationId=p_55


Richardson, R. C. and Stephan, A. [2007]: ‘Mechanism and Mechanical Explanation

in Systems Biology’, in F. Boogerd, F. Bruggeman, J. Hofmeyr and H. Westerhoff

(eds), Systems Biology: Philosophical Foundations, New York: Elsevier,

pp. 123–44.

Silberstein, M. and Chemero, T. [2013]: ‘Constraints on Localization and

Decomposition as Explanatory Strategies in the Biological Sciences’, Philosophy of

Science, 80, pp. 958–70.

Skipper, R. A. and Millstein, R. L. [2005]: ‘Thinking about Evolutionary Mechanisms:

Natural Selection’, Studies in History and Philosophy of Biological and Biomedical

Sciences, 36, pp. 327–47.

Strogatz, S. [1994]: Non-linear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry, and Engineering, Cambridge, MA: Westview Press.

Teller, P. [2001]: ‘Twilight of the Perfect Model Model’, Erkenntnis, 55, pp. 393–415.

Tindall, M. J., Porter, S. L., Maini, P. K., Gaglia, G. and Armitage, J. P. [2008]:

‘Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I:

The Single Cell’, Bulletin of Mathematical Biology, 70, pp. 1525–69.

Wadhams, G. H. and Armitage, J. P. [2004]: ‘Making Sense of It All: Bacterial

Chemotaxis’, Nature Reviews Molecular Cell Biology, 5, pp. 1024–37.

Weisberg, M. [2007]: ‘Three Kinds of Idealization’, The Journal of Philosophy, 104,

pp. 639–59.

Weiskopf, D. A. [2011]: ‘Models and Mechanisms in Psychological Explanation’,

Synthese, 183, pp. 313–38.

Westerhoff, H. V. and Kell, D. B. [2007]: ‘The Methodologies of Systems Biology’,

in F. Boogerd, F. Bruggeman, J. Hofmeyr and H. Westerhoff (eds), Systems

Biology: Philosophical Foundations, New York: Elsevier, pp. 23–70.

Woodward, J. [2008]: ‘Explanation, Invariance, and Intervention’, Philosophy of

Science, 64, pp. S26–41.

Yi, T., Huang, Y., Simon, M. and Doyle, J. [2000]: ‘Robust Perfect Adaptation in

Bacterial Chemotaxis through Integral Feedback Control’, Proceedings of the

National Academy of Sciences, 97, pp. 4649–53.

Mechanistic Explanation in Systems Biology 25

https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F674533&citationId=p_66
https://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F674533&citationId=p_66



